Morrow, E., & Clewett, D. (under revision). Distortion of overlapping memories relates to arousal and anxiety. [PDF]

Greer, J., Laksman, C., Huang, R., McClay, M., & Clewett, D. (under revision). Effortful retrieval of semantic memories induces forgetting of related negative and neutral episodic memories. [PDF]

McClay, M., Rouhani, N., & Clewett, D. (under review). Negative emotional events retroactively disrupt semantic scaffolding of temporal memory. [PDF]

In press

Rouhani, N., Clewett D., & Antony, J. (in press). Building and breaking the chain: A model of reward prediction error integration and segmentation of memory. Journal of Cognitive Neuroscience. [PDF]

Cowan, E., Chanales, A., Davachi, L., & Clewett, D. (in press). Goal shifts structure memories and prioritize event-defining information in long-term memory. Journal of Cognitive Neuroscience. [PDF]


Clewett, D., & McClay, M. (2024). Emotional arousal lingers in time to bind discrete episodes in memory. Cognition and Emotion, 1–20. [PDF]

Huang, R.* & Clewett, D.* (2024). The locus coeruleus: Where cognitive and emotion processing meet the eye. *authors contributed equally. Forthcoming in book, Modern Pupillometry. [PDF]


McClay, M., Sachs, M. E., & Clewett, D. (2023). Dynamic emotional states shape the episodic structure of memory. Nature Communications, 14(1), 6533. [PDF]


Greer, J.*, Morrow, E.*, & Clewett, D. (in press). Subliminal backdoors to forgetting emotional memories. Trends in Cognitive Sciences. *authors contributed equally [PDF]

Clewett, D. & Dunsmoor, J. (2022). Novel strategies for expanding memory’s penumbra in aging. Trends in Cognitive Sciences[PDF]

Dunsmoor, J., Murty, V., Clewett, D., Phelps., E. & Davachi, L. (2022). Tag and Capture: How salient experiences target and rescue nearby events in memory. Trends in Cognitive Sciences. [PDF]

Clewett, D., Dunsmoor, J., Bachman, S. L., Phelps, E. A., & Davachi, L. (2022). Survival of the salient: Aversive learning rescues otherwise forgettable memories via neural reactivation and post-encoding hippocampal connectivity. Neurobiology of Learning and Memory187, 107572. [PDF]


Clewett, D., Gasser, C., & Davachi, L. (2020). Pupil-linked arousal signals track the temporal organization of events in memory. Nature communications, 11(1), 1-14. [PDF]

Thorp, J., Clewett, D., & Riegel, M. (2020). Two routes to incidental memory under arousal: Dopamine and norepinephrine.

Mather, M., Huang, R., Clewett, D., Nielsen, S., Velasco, R., Tu, K., Han, S., & Kennedy, B. (2020). Isometric exercise facilitates attention to salient events in women via the noradrenergic system. NeuroImage210, 116560. [PDF]


Clewett, D.* & Murty, V.* (2019). Echoes of emotions past: How neuromodulators determine what we recollect. eNeuro. *authors contributed equally [PDF]

Clewett, D., Dubrow, S., & Davachi, L. (2019). Transcending time in the brain: How event memories emerge from experience. Hippocampus, 29(3),162-183. [PDF]


Clewett, D., Huang, R., Velasco, R., Lee, T.H., & Mather, M. (2018). Locus coeruleus activity strengthens prioritized memories under arousal. Journal of Neuroscience, 38(6), 1558-1574. [PDF]

Lee, T.H., Greening, S., Ueno, T., Clewett, D., Ponzio, A., Sakaki, M. & Mather, M. (2018). Arousal increases neural gain via the locus coeruleus-norepinephrine system in younger adults but not in older adults. Nature Human Behavior, 2, 356-366. [PDF]

Durbin, K., Clewett, D., Huang, R., & Mather, M. (2018). Age differences in selective memory of goal-relevant stimuli under threat. Emotion, 18(6),906-911. [PDF]


Clewett, D., & Davachi, L. (2017). The ebb and flow of experience determines the temporal structure of memory. Current Opinion in Behavioral Sciences, 17,186-193. [PDF]

Clewett, D., Sakaki, M., Huang, R., Nielsen, S., & Mather, M. (2017). Arousal amplifies biased competition between high and low priority memories more in women than in men: the role of elevated noradrenergic activity. Psychoneuroendocrinology, 80, 80-91. [PDF]

Mather, M., Yoo, H.-J, Clewett, D., Lee, T.-H., Greening, S., Ponzio, A., Min, J., & Thayer, J.F. (2017). Higher locus coeruleus MRI contrast is associated with lower parasympathetic influence over heart rate variability. Neuroimage, 150,329-335. [PDF]

Clewett, D., Sakaki, M., Nielsen, S., Petzinger, G., & Mather, M. (2017). Noradrenergic mechanisms of arousal’s bidirectional effects on episodic memory. Neurobiology of Learning and Memory137, 1-14. [PDF]


Mather, M.,Clewett, D., Sakaki, M., & Harley, C. W. (2016). GANEing traction: The broad applicability of NE hotspots to diverse cognitive and arousal phenomena. Behavioral and Brain Sciences39. [PDF]

Clewett, D., Lee, T.H., Greening, S., Ponzio, A., Margalit, E., & Mather, M. (2016). Neuromelanin marks the spot: Identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiology of Aging37, 117-126. [PDF]


Nielsen, S., Barber, S., Chai, A., Clewett, D., & Mather, M. (2015). Sympathetic arousal increases a negative memory bias in young women with low sex hormone levels. Psychoneuroendocrinology62, 96-106. [PDF]

Mather, M., Clewett, D., Sakaki, M., & Harley, C. (2015). Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 1-100. [PDF]

Aminoff, E. M., Freeman, S., Clewett, D., Tipper, C., Frithsen, A., Johnson, A., Grafton, S. T., & Miller, M. B. (2015). Maintaining a cautious state of mind during a recognition test: a large-scale fMRI study. Neuropsychologia, 67, 132-47. [PDF]


Clewett, D. V., & Mather, M. (2014). Not all that glittered is gold: neural mechanisms that determine when reward will enhance or impair memory. Frontiers in Neuroscience, 8:194. [PDF]

Freeman, S. M., Clewett, D. V., Bennett, C. M., Kiehl, K. A., Gazzaniga, M. S., & Miller, M. B. (2014). The posteromedial region of the default mode network shows attenuated task-induced deactivation in psychopathic prisoners. Neuropsychology29(3), 493-500. [PDF]

Clewett, D., Schoeke, A., & Mather, M. (2014). Locus coeruleus neuromodulation of memories encoded during negative or unexpected action outcomes. Neurobiology of learning and memory111, 65-70. [PDF]

Clewett, D., Bachman, S., & Mather, M. (2014). Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety. Neuropsychology28(4): 631-42. [PDF]

Clewett, D.*, Luo, S.*, Hsu, E., Ainslie, G., Mather, M., & Monterosso, J. (2014). Increased functional coupling between the left fronto-parietal network and anterior insula predicts steeper delay discounting in smokers. Human Brain Mapping35(8): 3774-87. *co-first authors [PDF]


Clewett, D., Schoeke, A., & Mather, M. (2013). Amygdala functional connectivity is reduced after the cold pressor task. Cognitive, Affective, & Behavioral Neuroscience3(3): 501-18. [PDF]

Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, S., Frithsen, A., Johnson, A., Tipper, C. M., Miller, M. B., Grafton, S. T., & Carlson, J. M. (2013). Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences, 110(15): 6169-74. [PDF]


Aminoff, E. M., Clewett, D., Freeman, S., Tipper, C., Frithsen, A., Johnson, A., Grafton, S. T., & Miller, M. B. (2011). Individual differences in shifting decision criterion: A recognition memory study. Memory and Cognition40(7), 1016-30. [PDF]