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Prediction errors drive reinforcement learning and organize episodic memory into distinct 
contexts, but do these effects interact? Here, we review the roles of midbrain dopamine, the 
locus coeruleus, and the hippocampus in event cognition to propose and simulate the theoretical 
influence of two prediction error signals in integrating versus segmenting events in memory. 
We suggest that signed reward prediction errors (SRPEs) can build mental models of reward 
environments, increasing the contextual similarity (integration) of experiences with stronger, 
more stable reward expectations. On the other hand, unsigned reward prediction errors (URPEs) 
can signal a new model of the environment, generating a contextual shift (segmentation) 
between experiences that crossed them. We moreover predicted that these differences in 
contextual similarity give rise to distinct patterns of temporal-order memory. We combined 
these ideas in a computational model to account for a seemingly paradoxical pattern of 
temporal-order memory where greater representational distance helps order memory within 
context but impairs it across contexts. We found that simulating SRPE integration and URPE 
segmentation differentially enabled the model to perform associative chaining, which involved 
reactivating items between two tested probes to assist with sequential retrieval. In sum, our 
simulations provide a unifying explanation for the varied ways that neuromodulatory systems 
may alter event cognition and memory. 
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Introduction 
 

Structuring our experiences into distinct clusters helps us process and store vast amounts 

of information in memory. When needed, we can draw upon specific memories to guide how we 

think, feel, and behave in similar situations. A substantial body of work shows that predictability 

plays an important role in shaping this memory clustering process (Shin & DuBrow, 2021). For 

instance, prediction errors, which quantify the difference between our expectations and their 

outcomes, can act as signals that segment the stream of experience into separate memory 

representations (Bein et al., 2023; Zacks et al., 2007). In a reinforcement-learning framework, 

reward prediction errors (RPEs) also play a critical role in guiding how we learn to seek reward 

and avoid punishment (Rescorla & Wagner, 1972). Although episodic memory and 

reinforcement learning have been linked to distinct neural mechanisms (Eichenbaum & Cohen, 

2004), recent work highlights the contribution of RPEs in orchestrating the interaction between 

these learning and memory systems (Antony et al., 2021; Rouhani et al., 2018, 2020; Rouhani, 

Niv, et al., 2023; Rouhani & Niv, 2021).  

In this review and model simulation, we first discuss the roles of midbrain dopamine, the 

locus coeruleus (LC), and hippocampal memory processes to set the stage for a theoretical 

account of how signed reward prediction errors (SRPEs) at reward cue and unsigned reward 

prediction errors (URPEs) at reward outcome, structure events in episodic memory. We then 

simulate putative SRPE and URPE effects in a computational model of episodic memory that 

captures a previously unexplained pattern of temporal-order memory.    

In our framework, we suggest that these two types of prediction error signals are 

mediated by the activation of separate arousal-related brainstem nuclei: the midbrain dopamine 

system and the locus coeruleus. We hypothesize that SRPEs elicited by cues that predict rewards, 

which are linked to increased dopamine release from the ventral tegmental area (VTA) (Schultz 

et al., 1997), promote the integration of rewarding experiences to build a mental model of the 

current, stable environment (‘context’). Importantly, we focus on a building positive rather than 

negative SRPE (value) signal at reward cue (e.g., reward instead of loss expectation), associated 

with increasing (rather than decreasing) dopamine release (Kim et al., 2020; Schultz et al., 1997). 

On the other hand, URPEs at reward outcome, quantifying the level of surprise, are 

linked to the LC (Sara, 2009), which co-releases dopamine and norepinephrine to influence 

hippocampal memory (Kempadoo et al., 2016; Takeuchi et al., 2016). It is theorized that spikes 
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in LC activity indicate shifts in the underlying statistics of the environment, signaling the need 

for a new mental model (Bouret & Sara, 2005; Jordan, 2023; Sara & Bouret, 2012). Adapting to 

such shifts may lead to a perceived ‘event boundary’ between temporally-adjacent events, which 

parses experience into contextually-distinct representations in memory (Antony et al., 2021; 

Clewett et al., 2019, 2020; DuBrow et al., 2017; Rouhani et al., 2020; Shin & DuBrow, 2021).  

Both VTA and LC neurons send projections to the hippocampus, suggesting they are well 

positioned to modulate mnemonic representations of time and context, including memory for the 

temporal order of events (Davachi & DuBrow, 2015; DuBrow et al., 2017; DuBrow & Davachi, 

2016; Tubridy & Davachi, 2011). Order memory is thought to be guided by a contextual 

representation of events, which relies on hippocampal processes (Davachi & DuBrow, 2015). 

While several models of temporal-order memory have been proposed (Davachi & DuBrow, 

2015; Friedman, 1993), we focus on associative chaining given behavioral (DuBrow & Davachi, 

2013) and neural evidence (DuBrow & Davachi, 2014) for this mechanism. In associative 

chaining, when retrieving the order of two items, intervening items that had occurred between 

them are reinstated to help chain together their original sequence. In computational terms, items 

from the same context can better cue each other during retrieval through their contextual 

similarity (‘pattern similarity’), enabling the reconstruction of the original sequence. On the flip 

side, changes in context reduce the contextual overlap between items (‘pattern separation’), 

which prevents this cueing, and leads to impairments in temporal-order memory (DuBrow et al., 

2017; DuBrow & Davachi, 2013, 2014, 2016).  

We propose that SRPEs integrate across experiences to build reward expectation (i.e., 

generate expected values at reward cue) and maintain internal representations of contextual 

stability across time (pattern similarity in context), thereby enhancing memory for their temporal 

order. In contrast, URPEs that signal a shift into a new context drive the representation of the 

current context away from the previous one (pattern separation in context), impairing order 

memory between events that crossed them. 

We tested our predictions in a variant of a computational model, the Context, 

Maintenance and Retrieval model (Horwath et al., 2023; Polyn et al., 2009; Rouhani et al., 

2020). In the CMR, a slowly drifting internal context, whose degree of change is determined by 

the ‘contextual drift’ parameter of the model, creates temporal associations between the contexts 

of experienced items. We modified this network to include the theoretical effects of building 
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SRPEs at reward cues that slow down contextual drift to generate greater pattern similarity, or 

overlap, between the contexts of rewarding items. We also implemented model-update URPEs at 

reward outcomes to induce a sharp increase in contextual drift, generating greater pattern 

separation between the current and previous context. As changes in context have been 

characterized by both gradual ‘drifts’ and more sudden ‘shifts’ (DuBrow et al., 2017), in our 

model, large SRPEs slow contextual drift while large URPEs elicit contextual shifts.  

Finally, we examined whether this modified network model could simulate a seemingly 

paradoxical pattern of temporal-order memory. Here, greater representational distance helps 

order memory for encountered items within a context yet impairs order memory for items across 

contexts (Pu et al., 2022; Rouhani et al., 2020). We implemented an associative chaining process 

during model recall to further examine whether the reactivation of intervening items between a 

tested pair predicted sequential retrieval (DuBrow & Davachi, 2013, 2014, 2016).  

 
Building a stable model of the environment: The role of midbrain dopamine  

 
Dopaminergic signals are widely recognized as an essential modulator of reinforcement 

learning systems. In foundational work, phasic, or transient, release of dopamine (DA) from the 

VTA has been shown to track the SRPE, increasing when outcomes are better than expected and 

decreasing when outcomes are worse than expected (Barto, 1995; Montague et al., 1996). With 

more learning, the presence of this phasic DA signal gradually shifts from outcome to the 

preceding cue that predicts reward, representing its value (Schultz et al., 1997). This DA signal 

was originally treated as a single, scalar ‘model-free’ value signal, driving behavior without the 

use of a model of the environment. Since then, it is now understood that DA transients may 

reflect multiplexed, ‘model-based’ value signals that build associations between stimuli to 

predict future rewards (Langdon et al., 2018; Sharpe, Batchelor, et al., 2017; Sharpe, Chang, et 

al., 2017). A new framework of mesolimbic DA further suggests that DA encodes causal 

associations between cues and their reward outcomes in memory (Jeong et al., 2022).  

Phasic DA signals are therefore substantially implicated in constructing models of the 

environment, which enable reward predictions within a given context. In an unchanging learning 

environment, an accumulating SRPE signal integrates across past reward outcomes to generate 

stable reward values. Such increases in the stability of reward representations may enable 
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memory mechanisms to prioritize the encoding of rewarding cues and their connections to 

related information (Jang et al., 2019; Rouhani & Niv, 2021; Stanek et al., 2019).  

Building upon these models of midbrain DA function, we suggest that predictably 

rewarding cues may increase the temporal stability of the underlying context by decreasing the 

rate of contextual drift (Fig. 1B). Greater contextual similarity between items, in turn, may 

facilitate retrieval of those associated outcomes and the average value of that reward context, 

which is useful when encountering similar contexts in the future (Bornstein & Norman, 2017; 

Duszkiewicz et al., 2019).       

 
Updating models of the environment: The role of the locus coeruleus 
 

Tracking the stability of unfolding contexts is essential for binding multi-featured 

elements to a shared underlying memory representation. At the same time, packaging 

experiences into distinct events also requires balancing such integration processes with a 

memory separation process. Large URPEs representing a change in the underlying environment, 

help serve this purpose by prompting us to discard our current mental model in favor of a new 

one (Jordan, 2023). LC activity tracks URPEs (Sara, 2009) and is linked to enhanced attention 

and memory for concurrent information (Nieuwenhuis et al., 2005; Swallow & Jiang, 2010). 

While surprising outcomes may generally boost memory by heightening attention, the LC has 

been especially implicated in processing unexpected or inferred changes to the underlying model 

of the environment (Bouret & Sara, 2005; Jordan, 2023; Nassar et al., 2012; Sales et al., 2019; 

Yu & Dayan, 2005). During these model updates, LC releases norepinephrine (NE) to facilitate a 

‘network reset’ across the brain, whereby functional brain networks are reconfigured to prioritize 

novel information and adjust behavior accordingly (Bouret and Sara, 2005; Sara, 2012). Pupil 

dilations, associated with phasic LC activity (Huang & Clewett, 2024; Joshi et al., 2016), 

moreover demonstrate selective sensitivity to these statistical or model-based violations (Antony 

et al., 2021; Kafkas, 2021; Zhao et al., 2019). 

Such contextual change detection can segment events in memory, commonly indexed by 

worse memory for the temporal order of items that spanned a context shift, or event boundary, 

compared to items within a shared context (Clewett et al., 2020; Davachi & DuBrow, 2015; 

DuBrow & Davachi, 2013, 2014; Horner et al., 2016; Rouhani et al., 2020). Although attentional 

boosts can enhance memory encoding during arousing or large URPE outcomes, impairments in 
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temporal-order memory are more reliably observed if there has been a change in the task or in 

the underlying reward distribution, which requires a model update (Rouhani et al., 2018, 2020; 

Rouhani, Niv, et al., 2023; Swallow et al., 2022; Wang & Egner, 2022, 2023). How the LC may 

support both memory enhancement and segmentation needs further clarification. Nonetheless, 

the effects of surprise versus a model update may be temporally dissociated: surprising outcomes 

predict an early increase in pupil dilation, whereas model-update outcomes predict a late 

decrease in pupil dilation (O’Reilly et al., 2013). 

 Here, we suggest that the LC supports model-update URPE outcomes by strengthening 

the activation of concurrent items in the underlying context at the expense of other active items 

(i.e., increasing the contextual drift). The enhancement of this model-update item at the expense 

of previous items, generates greater pattern separation between the current and prior context. 

Such separation, in turn, links experienced items to distinct underlying contexts in memory.  

 
Memory remodeling at event boundaries: The role of the hippocampus 
 
 SRPEs from the midbrain and URPEs from the LC may both modulate dopamine-

dependent plasticity in the hippocampus to predict episodic memory (Kempadoo et al., 2016; 

Lisman & Grace, 2005; Takeuchi et al., 2016). Hippocampal neurons moreover demonstrate 

gradually changing representations of a familiar environment (i.e., contextual drift), modulated 

by time (Bladon et al., 2019) as well as by experience (Geva et al., 2023; Khatib et al., 2023). In 

fMRI, greater hippocampal pattern similarity during item encoding moreover predicts stronger 

temporal-binding processes and order memory (DuBrow & Davachi, 2014). We propose that 

positive SRPEs during a reward cue, which gradually build accurate reward expectations in a 

stable learning environment, may slow down the rate of contextual drift. Reducing drift would 

increase pattern similarity between the contexts of items experienced in the same reward 

environment, which, in turn, increases the likelihood that items will episodically cue each other 

during retrieval. 

The hippocampus also plays a role in discretizing experience into separate, non-

interfering clusters (Clewett et al., 2019). When there has been a change in the underlying 

environment (e.g., an event boundary or model update), the hippocampus responds to its offset, 

reinstating the prior event to enhance the storage of recent details in memory (Baldassano et al., 

2017; Ben-Yakov et al., 2013; Ben-Yakov & Dudai, 2011; Ben-Yakov & Henson, 2018; Lee & 

https://paperpile.com/c/HOBLb3/MBH9P+W5smA+9V6Ga+LZQz+VNQrY+cKyHp
https://paperpile.com/c/HOBLb3/MBH9P+W5smA+9V6Ga+LZQz+VNQrY+cKyHp
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Chen, 2022; Reagh et al., 2020; Silva et al., 2019; Sols et al., 2017). Activity in boundary-

detecting neurons in the medial temporal lobe (including the hippocampus) has further been 

linked to stronger memory for items but worse temporal-order memory for boundary-spanning 

items (Zheng et al., 2022). These differential effects may be interpreted as a cognitive tradeoff, 

whereby encoding items is prioritized at the expense of binding inter-item associations across 

time (Heusser et al., 2018; Rouhani et al., 2020). Nevertheless, environments characterized by 

large URPEs (i.e., without changes to the underlying model) can demonstrate both enhanced 

item and temporal-order memory (Rouhani et al., 2018), pointing to a potentially selective effect 

of contextual shifts in segmenting memory.  

Relatedly, the hippocampus is thought to maintain representations of contextual stability 

across meaningless fluctuations, such as sensory changes in the environment ((Dimsdale-Zucker 

et al., 2022; DuBrow et al., 2017; DuBrow & Davachi, 2016)). Rather than respond to any 

change in inputs, the hippocampus may specifically respond to boundaries that signal meaningful 

changes to the current model or task goals (Dimsdale-Zucker et al., 2022; DuBrow & Davachi, 

2016). This observation further mirrors behavioral evidence that segmentation only occurs 

between items that require a new model of the environment (Rouhani, Niv, et al., 2023; Swallow 

et al., 2022; Wang & Egner, 2023).  

Accordingly, we predict that model-update URPEs would generate a sharp increase in 

contextual drift, thereby separating the context of rewarding items into distinct underlying 

representations. Consequently, memories for items that occurred across the boundary event, 

including intervening items, are less likely to be reactivated at retrieval to assist with the 

reconstruction of sequential information.  

Hippocampal subfields may moreover orchestrate event integration versus segmentation 

through different functional specializations. For example, the CA1 region, linked to novelty and 

prediction-error detection (Bein et al., 2020, 2023; Duncan et al., 2012), receives projections 

from midbrain dopamine as well as the locus coeruleus (Dahl et al., 2023). The dentate gyrus, on 

the other hand, associated with pattern separation of events in memory (Bakker et al., 2008), 

mostly receives projections from the locus coeruleus (Dahl et al., 2023), supporting the idea that 

LC-modulated URPEs promote pattern separation (Grella et al., 2021). We suggest that such 

pattern separation processes in the dentate gyrus may correspond with event segmentation effects 

in behavior. 

https://paperpile.com/c/HOBLb3/Q3Xxu+cUa5V+kTRBL+972OZ+89Sti+Wiscu+3J669+OryMH
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The hippocampus also interacts with regions of the prefrontal cortex to support temporal 

encoding processes both within and across events (Clewett et al., 2019; DuBrow & Davachi, 

2016). In fact, patients with frontal lobe lesions demonstrate selective impairments in temporal-

order but not item memory (Shimamura et al., 1990). More specifically, model-update URPEs 

have been shown to segment representations in the medial prefrontal cortex (Antony et al., 2021) 

and orbitofrontal cortex (Nassar et al., 2019). These findings indicate that representations in the 

prefrontal cortex may be critical to supporting memory for the relative order of events, 

particularly after a period of memory consolidation (Tompary & Davachi, 2020). 

Altogether, we propose a neuromechanistic model of event integration and segmentation 

based on the potentially distinct influence of different kinds of prediction errors on contextual 

memory. We suggest that SRPEs, relying on midbrain dopamine, increase at reward cues to 

build a predictable model of the environment. By contrast, we predict that large URPEs at 

reward outcome, linked to LC activation, indicate the need for a new model. These signals 

further interact with hippocampal processes that track and retrieve contextual and temporal 

representations from memory. In the next section, we simulate the potential influence of these 

RPE signals on a contextual representation of the environment to predict different patterns of 

temporal-order memory. 

 
Figure 1. Theoretical and experimental paradigm. Reward prediction error signals and their neural substrates 
during a reward-conditioning task. In this task, participants learned to expect (and earn) rewards coupled with trial-
unique scenes; large unsigned reward prediction errors (URPEs) indicated a change to the underlying reward 
distribution (a change in the mean of the received rewards, e.g., the scene with a 7¢ outcome; for experimental 
paradigm, see (Rouhani et al., 2020). During the cue that predicts reward (scene image presented prior to reward 

https://paperpile.com/c/HOBLb3/ENScr+EBlEm
https://paperpile.com/c/HOBLb3/ENScr+EBlEm
https://paperpile.com/c/HOBLb3/T2BEr
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https://paperpile.com/c/HOBLb3/e5GfS
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outcome), theoretical signed reward prediction errors (SRPEs) are indicated in pink. SRPEs gradually build at the 
reward cue over the course of learning to represent the value of that experience. This signal is linked to phasic 
dopaminergic signals from the midbrain thought to influence hippocampal plasticity. To note, though SRPEs can also 
be negative (unlike URPEs), we include only the positive response at cue since the values in this task are all above 0, 
and a building negative RPE signal (conversely leading to a dip in phasic dopamine) is likely to produce distinct 
memory effects. URPEs at outcome, plotted in blue, are largest during the first trial (when participants do not know 
what to expect) and during subsequent ‘model-update’ outcomes when there has been a change in the mean of the 
underlying reward distribution. Large URPEs have been associated with dopaminergic and noradrenergic signals from 
the locus coeruleus which modulate hippocampal memory.  
 

Computational model  
 
Experimental task 

We aimed to test our theoretical predictions by simulating behavior from a study which 

showed that model-update URPEs create event boundaries in memory (Rouhani et al., 2020). 

During encoding, participants completed a reward-conditioning task where they observed a 

sequence of trial-unique scene stimuli along with reward outcomes (a proportion of which they 

received, Fig. 1). The reward amount on each trial was contingent on the average value of the 

reward context, which would shift after 5-9 trials in every block (4-5 shifts per block). In 

Experiment 4 (and its replication), after this encoding phase, participants were asked to order two 

scene items by indicating which came first. The tested scene pairs were either encountered 

within or across reward contexts and had been 0, 1 or 3 trials apart during encoding. Order 

memory was impaired for items that crossed the model-update item, which indicated the start of 

a new reward context (1 or 3 trials apart; mixed-effects logistic regression: B = -0.20, z = -4.79, p 

< 0.001; Fig 3A). Moreover, order memory improved for more distant item pairs that were 

encountered in the same reward context (B = 0.14, z = 2.60, p = 0.009; Fig 3A) but not for item 

pairs that crossed contexts (B = 0.11, z = 1.47, p = 0.14; Fig 3A).  

We hypothesized that as participants came to expect the reward outcome at cue, 

quantified by increasing SRPEs (Fig. 1 in pink), the contextual drift would decrease, leading to 

greater similarity between the rewarding items’ contexts. On the other hand, when large URPEs 

at reward outcome signaled the beginning of a new reward context (model-update item, Fig. 1 in 

blue), we expected contextual drift to sharply increase, thereby separating the contexts of 

rewarding items by the underlying mean of the reward distribution. In these instances, the SRPE 

contextual drift subsequently resets, reflecting learning of a new reward context. Notably, while 

each trial during reward conditioning was associated with an SRPE and URPE signal at different 

https://paperpile.com/c/HOBLb3/LZQz
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timepoints (cue versus outcome), our model implements a single contextual drift for each trial. 

The trial- (or item-) specific contextual drift is governed by the SRPE within a reward context 

and the URPE during a model-update outcome that initiates a new reward context (for a 

visualization, see Fig. 2A, ‘SRPE & URPE contextual drift’).  

In the experimental task (Fig. 1), the SRPE at reward cue and URPE at reward outcome 

were moreover associated with the same scene (the scene was initially presented alone, followed 

by its reward outcome; (Rouhani et al., 2020). The scene that would come to be associated with a 

model-update outcome therefore shared a context (and a high SRPE) with the preceding item 

during its cue phase (before outcome presentation), potentially explaining why an event 

boundary was not detected between the model-update scene and its direct predecessor. In our 

simulation, we therefore focused on pairs that were unambiguously across the event boundary in 

this task (pairs that had been 1 and 3 trials apart during encoding).  
 

 

https://paperpile.com/c/HOBLb3/LZQz
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Figure 2. A. Computational model simulating the effects of reward prediction errors on order memory. To test 
the mechanism supporting the effects of reward prediction errors on order memory, we used a variant of the Context, 
Maintenance and Retrieval model (Horwath et al., 2023; Polyn et al., 2009; Rouhani et al., 2020). In this model, 
experienced items first activate their corresponding unit in the feature layer (F, ‘item features’), then this activation 
spreads upward to update the context layer (C) via the feature-to-context associative matrix (MFC). The contextual 
drift parameter determines the extent to which a new item activates its corresponding unit in C, crowding out the 
activation of previously encoded items. The sequence in C reflects this diminishing activation of items given their 
order of presentation. During retrieval, activation in C spreads down to F via the context-to-feature associative matrix 
(MCF), wherein features that had been episodically linked to the present state of C are activated and compete for 
retrieval (see ‘decision competition’ in panel B). We also simulated different sequences of contextual drift given the 
theoretical contribution of unsigned reward prediction errors (URPEs, in blue) and signed reward prediction errors 
(SRPEs, in pink) in modulating C during encoding (note that in the actual stimulation, 8 items, instead of the pictured 
3, constituted a reward context). We propose a CMR model (‘SRPE & URPE contextual drift’) in which increasing 
SRPEs at reward cue decrease the contextual drift in a stable reward context, whereas large URPEs (indicating a 
model-update process) generate sharp increases in contextual drift. The latter effect results in the creation of separate 
reward contexts in memory (e.g., the stronger difference in activation between the third and fourth presented scenes 
in C). We compared episodic recall of this model to one that only included the URPE drift (‘URPE contextual drift’) 
and one that excluded both RPE modulators (i.e., a static drift parameter). B. Temporal-order memory. After 
encoding, we simulated temporal-order memory (judging which of two items occurred first or second) by priming the 
network with each item in a tested pair (‘prime’). We then tallied the number of successful episodic retrievals of the 
other item in the pair (‘target’) during the decision competition. We further examined an associative chaining account 
of temporal-order memory by testing whether network reactivation of intervening items (i.e., those items encountered 
between the prime and the target) predicted the successful retrieval of the target item. We examined whether greater 
contextual similarity for items experienced within the same reward context increased the likelihood that intervening 
items were reactivated (‘within-reward context’) compared to those across a model-update (‘across-reward update’). 
Additionally, within the same reward context, we predicted that item pairs that were separated by more trials at 
encoding (3-trials versus 1-trial apart) would further bolster intervening-item reactivation to successfully retrieve the 
target item.   
 
Model overview 
 

We tested a mechanism that guides the extent of pattern similarity (or separation) in the 

contexts of rewarding items to predict both improving temporal memory for more distant items 

within the same reward context as well as its disruption across a reward-context (or ‘model’) 

update. We implemented a variant of the CMR (Polyn et al., 2009) developed to examine the 

mechanism supporting event segmentation for large URPEs (Rouhani et al., 2020). In this 

computational model, each experienced item activates its corresponding unit in a drifting internal 

representation of the context, represented by a vector of previously experienced items (‘context 

vector’) whose activations decrease with time; the extent of this decrease is governed by the 

contextual drift parameter (Fig. 2A). A sequence of experienced items are thus temporally linked 

to each other through co-active units in context. Large (model-update) URPE items break the 

https://paperpile.com/c/HOBLb3/LZQz+Dv5n+jx0iz
https://paperpile.com/c/HOBLb3/Dv5n
https://paperpile.com/c/HOBLb3/LZQz
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contextual association between items by updating context with higher activation, crowding out 

previously active items (i.e., causing the context to drift more).  

We previously simulated temporal-order memory by relying on distance theories of 

temporal judgment (Friedman, 1993, 2004), which predicted behavior that was opposite to our 

results (Rouhani et al., 2020). In distance theories, greater dissimilarity between the context at 

encoding and test would predict that a more distant (i.e., pattern separated) item, such as one 

occurring prior to a model update, would be accurately judged as having occurred earlier than 

one that occurred after it (Hintzman, 2002). We instead found reliable impairment in temporal-

order memory for pairs that crossed large URPEs despite the contextual distance between those 

items (Rouhani et al., 2020). Nonetheless, recent computational modeling work offers a process 

relying on distance theories that aims to explain this pattern of behavior (Pu et al., 2022). In this 

model, event boundaries reset the initial encoding context. During retrieval, the distance between 

the contextual representations of the probed items are compared to the initial encoding context. 

Items that occur after a boundary, and are therefore more similar to this reference point, are 

inaccurately judged as less recent. This mechanism relies on the assumption that a proportion of 

the initial encoding context continues to be reinstated at every event boundary and that this initial 

context is used as a reference point when making order judgments. 

In the following simulation, we instead examined an associative chaining model of order 

memory (Caplan et al., 2022; Friedman, 1993). In the chaining model, intervening items between 

a tested pair of items are reactivated to facilitate order judgments. The mnemonic cueing of items 

through context makes reactivation more likely for intervening items that had shared a context 

versus those that had crossed a boundary during encoding (DuBrow & Davachi, 2013, 2014, 

2016). To this end, we examined both retrieval success of the corresponding (‘target’) item in a 

tested pair as well as the number of intervening items that were reactivated (i.e., retrieved in the 

model) prior to recalling the target item. To explain how order memory discriminations improve 

for more distant items within the same reward context, we further manipulated the drift 

parameter of the original URPE model (Rouhani et al., 2020). In this simulation, not only does 

the drift increase at model-update URPEs, but also decreases trial-by-trial for items within the 

same reward model of the environment (Fig. 2A, ‘SRPE & URPE’ contextual drift), leading to 

increased pattern similarity in the contexts of those items. We compared the output of this model 

https://paperpile.com/c/HOBLb3/ffsRV+w9QWk
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/Q51bQ
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/Vxai
https://paperpile.com/c/HOBLb3/ffsRV+0O5Gi
https://paperpile.com/c/HOBLb3/CQ06r+k94HY+ENScr
https://paperpile.com/c/HOBLb3/CQ06r+k94HY+ENScr
https://paperpile.com/c/HOBLb3/LZQz


12 

to one that only included the URPE drift and one that relied only on a static drift value, 

excluding both RPE modulators (Fig. 2A).   

 
Temporal-order memory simulation 
 

During memory encoding, we presented 32 items to the network (orthogonal ‘one-hot’ 

unit vectors) which included three large URPE, model-update items that indicated the start of a 

new reward context. These model-update event boundaries occurred after a sequence of eight 

items, similar to the structure of previous paradigms (Clewett et al., 2020; Rouhani et al., 2020). 

To simulate a chaining process during memory retrieval, we depended only on the model’s 

episodic (versus semantic) route given order memory’s dependence on episodic memory 

mechanisms (Davachi & DuBrow, 2015); for model details, see (Rouhani et al., 2020). The 

retrieval process is initiated by priming the network with each item included in a tested pair, one 

at a time, after which the network engages in a recall period governed by a leaky, competitive 

accumulation process (Usher & McClelland, 2001). We simulated this process 1000 times for 

each item within a pair using the same tested pairs in (Rouhani et al., 2020) and determined the 

number of successful retrievals of the other (target) item. We further tracked the number of 

intervening items (experienced between the tested items during encoding) that were retrieved by 

the network before successful or unsuccessful retrieval of the target item.  

All parameters of the original model (Rouhani et al., 2020) were implemented, with the 

exception of the contextual drift. For the ‘SRPE and URPE’ contextual-drift model, we 

decreased the standard drift parameter (which begins at the original value, β = 0.6) for each 

subsequent item within a context, and retained the higher-drift parameter of the large-URPE item 

(β-model update = 0.8). The value of this SRPE trial-by-trial decrement in drift was determined 

by simulating results ranging from 0 to 0.09 (in 0.01 increments), 1000 times each, and selecting 

the value that best captured the qualitative pattern of behavioral results (0.04, see ‘Simulation 

results’ below). The qualitative fit was determined by matching the relative difference in the 

means of order recall for each condition with that observed in behavior. We next compared the 

simulations of this model to two different models. The first model only included the URPE, 

model-update increase in contextual drift (β-model update = 0.8, otherwise β = 0.6). The second 

model excluded both RPE modulators, instead implementing a static drift of 0.75 (consistent 

with the original fit values of this parameter (Polyn et al., 2009); Fig. 2A).   

https://paperpile.com/c/HOBLb3/LZQz+100c6
https://paperpile.com/c/HOBLb3/fuHRR
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/lbWpL
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/Dv5n
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Figure 3. Temporal-order memory in behavior and model simulations. A. Behavior: Temporal-order memory 
results in Rouhani et al., 2020 (across Experiment 4 and its replication). Participants were asked to indicate which of 
two presented scenes occurred first; scene pairs were either within the same reward context or across large URPE 
model-update outcomes (‘within’ versus ‘update’) and varied in the number of intervening items at encoding (1 versus 
3-trials apart). Order memory for items within the same reward context was better overall and for pairs that had been 
more trials apart at encoding (more intervening items), whereas order memory was impaired across all pairs that 
crossed a model update, without similar improvements for more distant pairs. ***p<0.001, **p<0.01, n.s. p>0.10. B. 
Model simulations: correlations between the context vectors after encoding. The sharp increase in contextual drift 
during model-update outcomes created representational structure: items belonging to the same underlying reward 
context were more similar to each other than those that crossed a reward context (or model) update. C. Model 
simulations: Proportion of successful target retrievals. A model that increased contextual drift during model-update 
items (reflecting URPE signals at outcome) and decreased the contextual drift within a reward context (reflecting 
increasing SRPE signals at cue) predicted the behavioral pattern of results in (A). A model that only included the 
URPE component (diamond points) captured worse recall of items that crossed an event boundary, but did not replicate 
better recall of more-distant items within the same reward context. A model without either reward prediction error 
component (static drift, black lines) did not predict worse recall for boundary-spanning pairs nor improved memory 
for within-context items that were further apart (predicted the opposite pattern). D. Model simulations: Proportion of 
intervening item recall during successful target retrievals. We found that intervening-item reactivation predicted 
successful recall of the target item.   
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Simulation results 
 
 We found that increased contextual drift at model-update items, along with its 

incremental decrease within a reward context, predicted our pattern of behavioral results (Fig. 

3A,C). As before, a higher-value drift during large URPE, model-update outcomes caused 

pattern separation in the contexts of experienced rewards, here representing a change in the 

means of the underlying reward distribution (Rouhani et al., 2020). Consequently, when testing 

pairs that crossed a model update, items were less likely to episodically retrieve each other, 

predicting worse order memory (Fig. 3C).  

On the other hand, a theoretical SRPE that diminished contextual drift within a reward 

context – beginning with the original drift of 0.6 and decreasing by 0.04 for every subsequent 

item – led to better episodic retrieval of the target item. This enhancement increased for pairs 

that had been further apart from each other during encoding (1 vs. 3-trials apart, Fig. 3C), 

mirroring behavioral results (Fig. 3A). To note, model retrieval proportions (Fig. 3C) do not 

account for baseline chance performance, precluding a direct comparison of those numerical 

values to behavior (Fig. 3A). We also do not include statistics in our model simulations, as the 

1000 simulations run for each item within a pair yielded reliable output, and statistical 

comparison between large numbers of simulations (24000 total simulations) reflect inflated 

significance values (all reported differences were p<0.0001).  

We compared these results to a model that only included the URPE drift and one that 

excluded RPE drift altogether (static model). While the URPE model captured the retrieval 

impairment for context-spanning pairs, it did not predict improving recall for more distant 

within-context pairs (Fig. 3C, diamond points). Worse, the static-drift model did not predict any 

differences between pairs within or across reward contexts. Moreover, and to a larger extent than 

the URPE-drift model, the static-drift model predicted the opposite results for more distant, 

within-context pairs such that items that were further apart during encoding were less likely, 

rather than more likely, to be retrieved (Fig. 3C, black lines). This finding confirms that a 

decreasing drift (SRPE & URPE contextual drift) versus a static drift within a reward context 

(URPE and static contextual drifts) allows more items to cue each other through more similar 

contexts during recall.  

https://paperpile.com/c/HOBLb3/LZQz


15 

We further tested whether associative chaining (DuBrow & Davachi, 2013, 2014, 2016), 

represented by network reactivation of intervening items, predicted the subsequent retrieval of 

target items as well as better recall of more distant within-context items. First, we indeed found 

intervening-item reactivation to predict subsequent retrieval of the target item within and across 

all pair types and contextual-drift models (all ps < 0.001). Furthermore, when examining 

simulations with successful target retrievals, pair types and contextual-drift models led to 

different proportions of intervening-item retrieval (Fig. 3D), mirroring the pattern of model 

results in order memory (Fig. 3C).  

More specifically, when implementing SRPE & URPE contextual drift, intervening items 

were more likely to be retrieved for pairs within versus across reward contexts. Moreover, within 

a reward context, pairs that were encountered more trials apart were more likely to retrieve any 

of the (three) intervening items. An associative chaining process, wherein intervening items are 

more likely to be recalled, may therefore support better temporal-order memory for more distant 

items within a stable context. This effect was not observed for pairs that crossed a model-update 

outcome, whose higher contextual drift generated more dissimilarity between the contexts of 

tested items, precluding the retrieval of intervening and target items.  

 
Simulation discussion 
  

In this simulation, we examined how theoretical SRPE signals at reward-predictive cue 

and URPE signals at reward outcome may govern the contextual drift associated with those items 

to predict patterns in temporal-order memory. We hypothesized that with more learning, larger 

positive SRPEs, representing the value of that experience, would decrease the contextual drift 

and increase pattern similarity within a reward context. Indeed, we found this decreased drift 

better predicted the episodic retrieval of more distant pairs that occurred in the same reward 

context. In contrast, we hypothesized that large URPEs that indicate a change in the underlying 

reward distribution (model-update outcomes) would increase contextual drift. We found this 

manipulation to pattern separate the contexts of items that occurred in different reward contexts, 

leading to impaired episodic retrieval of items that crossed large URPE, model-update outcomes.  

Additionally, we found that a temporal memory mechanism relying on associative 

chaining (DuBrow et al., 2017; DuBrow & Davachi, 2013, 2014, 2016) versus distance theories 

(Friedman, 1993; Pu et al., 2022; Rouhani et al., 2020) supported prior behavioral results. 

https://paperpile.com/c/HOBLb3/CQ06r+k94HY+ENScr
https://paperpile.com/c/HOBLb3/CQ06r+ENScr+k94HY+YTtoD
https://paperpile.com/c/HOBLb3/Vxai+ffsRV+LZQz
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Consistent with experimental work, we observed that the reactivation of intervening items 

predicted the episodic retrieval of target items across all pair types (DuBrow & Davachi, 2014). 

Importantly, however, the likelihood of intervening-item reactivation differed between pair types 

to explain behavioral patterns, demonstrating its key role in supporting the mnemonic 

sequencing of items. Future empirical studies could more directly compare whether an 

associative-chaining account of temporal-order memory – relying on the reactivation of 

intervening items during recall (DuBrow & Davachi, 2013, 2014, 2016) – versus a distance 

account – relying on representational distance (Jenkins & Ranganath, 2016; Liu et al., 2022) or 

the reactivation of initial contexts at event boundaries (Pu et al., 2022) – supports neural and 

behavioral signatures of temporal-order memory within and across contexts.  

Our theoretical model presents limitations and avenues for further development. First, 

while the model relies on the episodic routes of the CMR to encode and retrieve items, it does 

not explicitly reconstruct item order. Future work could test SRPE integration versus URPE 

segmentation by leveraging models that explicitly reconstruct temporal order (Franklin et al., 

2020). Additionally, in our model, the dynamics in contextual drift were theoretically associated 

with RPE signals and did not reflect the empirical RPE values of each trial during learning. For 

example, we assumed a single, linear decrease in SRPE contextual drift, whereas the rate of 

learning varies between individuals and reward environments, suggesting there may be greater 

variability in the form and degree of this decrease. Although our model does not differentiate 

SRPE effects in high- versus low-reward environments, higher reward motivation, with larger 

SRPEs, may further decrease temporal drift to predict better order memory. On the flip side, 

decreasing motivation may impair order memory, potentially explaining the worse ordering of 

items encountered later in a context (Pu et al., 2022). Future studies should examine the 

influence of motivation on contextual similarity and subsequent order memory.    

The increase in contextual drift during large URPE, model-update outcomes was also 

uniform in our model, whereas these outcomes can vary in magnitude. While the specific 

magnitude of model-update outcomes did not appear to further influence temporal-order memory 

in behavior (Rouhani et al., 2020), the changes in the underlying reward distributions in this task 

were less noisy and uncertain than in real-world scenarios. Our model could incorporate 

empirical RPEs that reflect individual learning trajectories and trial-by-trial uncertainty in the 

detection of a new reward context. It could also be implemented in more naturalistic tasks to 

https://paperpile.com/c/HOBLb3/k94HY
https://paperpile.com/c/HOBLb3/CQ06r+k94HY+ENScr
https://paperpile.com/c/HOBLb3/t4ku+qEXp
https://paperpile.com/c/HOBLb3/Vxai
https://paperpile.com/c/HOBLb3/PiJH5
https://paperpile.com/c/HOBLb3/PiJH5
https://paperpile.com/c/HOBLb3/Vxai
https://paperpile.com/c/HOBLb3/LZQz
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potentially capture the richness and variability of different encoding contexts. Lastly, given that 

drift appears to occur at multiple timescales in the brain (Antony, Liu, et al., 2023; Mau et al., 

2018; Rubin et al., 2015; Tsao et al., 2018), our model could be developed to describe how RPEs 

induce changes at different timescales to support the observed memory patterns.  

 

Discussion 
 
Prediction errors govern how we learn and what we remember in laboratory experiments 

and in the real world (Antony, Van Dam, et al., 2023; Bein et al., 2023; Rouhani, Niv, et al., 

2023; Rouhani, Stanley, et al., 2023). In our computational model, we highlight how two 

prediction error signals, the positive SRPE (value signal) at reward cue and the URPE (model-

update signal) at reward outcome, may differentially integrate versus segment rewarding 

experiences in memory.  

We propose that a positive SRPE that builds with stronger reward expectations at reward 

cue, linked to increased DA firing from the midbrain, may increase the contextual similarity of 

those experiences to support temporal-order memory within a reward context. Conversely, large 

model-update URPEs at reward outcome, associated with DA and NE signals from the LC, may 

decrease the contextual similarity of temporally-adjacent experiences to create separate reward 

contexts in memory. These RPE effects were simulated in a variant of the CMR model (Rouhani 

et al., 2020), which predicted the pattern of order memory through an associative chaining 

process. Here, greater contextual similarity (produced by a SRPE) predicted increased 

reactivation of intervening items to enhance retrieval of more distant items from the same reward 

environment. By contrast, the break in context (produced by a URPE) decreased the reactivation 

of intervening items and impaired retrieval of items that crossed it. 

We note that the extent of (SRPE) pattern similarity versus (URPE) pattern separation 

may differentially influence memory for generalized, value-based information versus specific 

details of the event itself, respectively. This is consistent with midbrain DA’s role in memory 

generalization versus LC-modulated memory for event details (Duszkiewicz et al., 2019). 

Greater hippocampal pattern similarity can moreover facilitate (DuBrow & Davachi, 2014) and 

interfere with temporal-order memory (Jenkins & Ranganath, 2016), raising the question as to 

when contextual similarity helps guide versus impairs successful episodic retrieval. Future work 

https://paperpile.com/c/HOBLb3/QZlq+gr3K+MlRH+icF2
https://paperpile.com/c/HOBLb3/QZlq+gr3K+MlRH+icF2
https://paperpile.com/c/HOBLb3/tQiSv+cKyHp+TGdZt+78xv
https://paperpile.com/c/HOBLb3/tQiSv+cKyHp+TGdZt+78xv
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/LZQz
https://paperpile.com/c/HOBLb3/yZBm9
https://paperpile.com/c/HOBLb3/k94HY
https://paperpile.com/c/HOBLb3/qEXp
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could examine the relationships between RPEs, contextual similarity in the hippocampus, and 

their effects on more generalized versus detailed episodic memory for rewarding experiences.  

While we focused on reward learning signals, these prediction error effects may not be 

exclusive to rewarding outcomes. For example, we expect the effects of URPEs to generalize to 

non-reward domains, consistent with episodic memory signatures of event boundaries (Clewett 

et al., 2020; DuBrow & Davachi, 2013; Heusser et al., 2018). For example, other elicitations of 

arousal, including emotional stimuli (Clewett et al., 2014; Clewett & McClay, 2024; McClay et 

al., 2023) or task switching (Wang & Egner, 2022), have been shown to elicit segmentation 

effects in memory. Additionally, the building of SRPEs reflects strengthening expectations, 

which may be relevant to the formation of any cognitive model (Langdon et al., 2018; Sharpe, 

Batchelor, et al., 2017; Sharpe, Chang, et al., 2017). Nevertheless, it is likely that the affective 

domain of the SRPE (e.g., positive, negative or neutral) would produce different mnemonic 

effects given a well established body of work showing the distinct influences of positive and 

negative emotion on the quality and quantity of memory (Clewett & Murty, 2019; Murty & 

Alison Adcock, 2017; Palombo & Cocquyt, 2020; Rouhani, Niv, et al., 2023; Williams et al., 

2022). Recent work supports this idea, demonstrating that positive emotions tend to bind and 

compress memories, whereas negative emotions tend to segment and separate adjacent events in 

memory (McClay et al., 2023).   

The effects of building negative (versus positive) SRPEs are moreover relevant to clinical 

disorders. For instance, post-traumatic stress disorder, marked by intrusive and recurrent 

traumatic memories, has been associated with distinct arousal and hippocampal responses to 

threat (Tanriverdi et al., 2022), which have been recently suggested to reflect disruptions in 

model-update processes (Cisler et al., 2024). Negative SRPEs may further engage LC-arousal 

systems to segment rather than integrate memory across experience (Clewett et al., 2014; 

Clewett & McClay, 2024; McClay et al., 2023). This work demonstrates that valenced 

expectations influence memory organization in a manner not yet examined in our model, with 

implications for the maladaptive processing of negative experience. 

In sum, we propose that RPEs, quantifying the valence and surprise of reward outcomes, 

may be critical modulators of both event integration and segmentation, consistent with putative 

neural signals that interact with the hippocampus to support episodic memory.  

https://paperpile.com/c/HOBLb3/100c6+16qM9+CQ06r
https://paperpile.com/c/HOBLb3/100c6+16qM9+CQ06r
https://paperpile.com/c/HOBLb3/Bwrpe+O5qDc+GIWPX
https://paperpile.com/c/HOBLb3/Bwrpe+O5qDc+GIWPX
https://paperpile.com/c/HOBLb3/9V6Ga
https://paperpile.com/c/HOBLb3/UNa1C+zGmPi+oFRBk
https://paperpile.com/c/HOBLb3/UNa1C+zGmPi+oFRBk
https://paperpile.com/c/HOBLb3/dyiQX+5MnuH+cKyHp+9L33+oheo
https://paperpile.com/c/HOBLb3/dyiQX+5MnuH+cKyHp+9L33+oheo
https://paperpile.com/c/HOBLb3/dyiQX+5MnuH+cKyHp+9L33+oheo
https://paperpile.com/c/HOBLb3/O5qDc
https://paperpile.com/c/HOBLb3/xNJM8
https://paperpile.com/c/HOBLb3/0imsA
https://paperpile.com/c/HOBLb3/Bwrpe+O5qDc+GIWPX
https://paperpile.com/c/HOBLb3/Bwrpe+O5qDc+GIWPX
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