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Abstract 

Event segmentation is the cognitive process of dividing continuous experiences into meaningful 

units. Although working memory (WM) is believed to play an instrumental role in event 

segmentation, its specific contribution remains under debate. Here, we used two 

electroencephalography (EEG) indices of WM load, alpha-band suppression and contralateral 

delay activity (CDA) amplitude, to test whether WM supports event segmentation by gradually 

accumulating information during unfolding events or by reactivating information at the transitions 

between events (i.e., event boundaries). Participants viewed object images paired with sounds that 

both remained in the same category for 6 consecutive items to form a stable event, followed by 2 

items from another category, creating an event boundary. Temporal order and sequential memory 

were used to assess event segmentation. We found increased alpha-band suppression following 

event transitions, supporting the reactivation account. Evidence for the accumulation was mixed, 

with no evidence for increased alpha-band suppression and moderate evidence for increased CDA 

during events. These results indicate that WM contributes to event segmentation primarily through 

boundary-triggered reactivation, with only limited evidence for within-event accumulation. 
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Everyday life unfolds continuously, yet we remember experiences as a sequence of discrete 

events. Event segmentation refers to the process by which ongoing experience is parsed into 

meaningful units that structure episodic memory, with meaningful changes in the environment 

signaling event boundaries and transitions between events (Clewett et al., 2019; Ezzyat & Davachi, 

2011; Zacks et al., 2007). According to the Event Segmentation Theory (EST), working memory 

(WM) supports event segmentation by maintaining representations of the current event and 

updating those representations at boundaries (Speer et al., 2007; Swallow et al., 2009; Zacks, 

2020). Supporting this idea, WM properties, such as capacity, updating, and forgetting rate, are 

correlated with event segmentation ability (Jafarpour et al., 2022; Leroy et al., 2024, 2025; Shim 

et al., 2024). However, the specific mechanism by which WM contributes to event segmentation 

remains unclear.  

 One possibility is that sequential information gradually accumulates in WM over the course 

of an event (Güler et al., 2024). Because WM capacity is limited, this accumulation must 

eventually be reset, with event boundaries serving as cues that clear information from the 

preceding event and free mental resources for encoding the next (Ongchoco & Scholl, 2019; 

Radvansky & Zacks, 2017). Accumulation within an event may support predictions about 

unfolding experiences and strengthen associations among memoranda encountered within a shared 

context. Supporting this idea, Wu et al. (2023) showed that neural patterns became progressively 

more similar across successive images within an event, as indexed by increasing similarity 

between the electroencephalography (EEG) patterns evoked by consecutive images, and this effect 

weakened at boundaries. This progressive increase in neural pattern similarity may reflect the 

accumulation of information in WM, because greater similarity can arise when successive time 

points share overlapping memory content.  

Another possibility is that WM facilitates the transfer of information to long-term memory 

(LTM) during an event, with event boundaries triggering reactivation of information from the prior 

event in WM, helping to bind them together within events and preserve a sense of continuity across 

events. Indeed, recent studies suggest that reactivation of information occurs at event boundaries, 

not within events. For example, EEG activity patterns observed during item encoding were 

subsequently reinstated at event boundaries, but not before (Sols et al., 2017). Silva et al. (2019)  

extended this finding using EEG while individuals watched movies, showing that stronger 

boundary-related reactivation of an event predicted better recall of the narrative. Chang et al. 

(2021) used fMRI during story reading and observed that reactivation at boundaries supported 

stronger integration of the preceding and upcoming events, enabling the narrative to be represented 

as continuous. However, whether this reinstatement reflects the reactivation of LTM 

representations within WM remains unclear. 

The goal of the present EEG study was to directly test these two accounts by combining 

two well-established neural indices of WM load: contralateral delay activity (CDA) and alpha-

band suppression. Participants memorized sequences of animate and inanimate images, with event 

boundaries created by category switches after either six items (events) or two items (boundaries; 

(DuBrow & Davachi, 2013, 2014). CDA provides a sustained neural index of WM load that 
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increases with the number of maintained items and asymptotes near WM capacity, making it well-

suited for tracking accumulation over time. Alpha-band suppression similarly tracks WM load for 

both currently encoded information and information retrieved from LTM (Fukuda et al., 2015; 

Fukuda & Woodman, 2017; Hakim et al., 2019), making it a valid tool to assess reactivation of 

LTM information in WM. The accumulation account predicts a gradual increase in alpha-band 

suppression and CDA amplitude within events. In contrast, the reactivation account predicts 

greater alpha-band suppression at, particularly following events (6 items) than boundaries (2 

items).  

 

Methods 

Participants 

A power analysis was conducted in G*Power 3.1 to estimate the appropriate sample size. 

This analysis was based on studies that assessed alpha-band suppression across varying WM loads 

using EEG (Fukuda et al., 2015; Heinz & Johnson, 2017). Heinz and Johnson (2017) reported a 

significant increase in alpha-band suppression between two- and four-item conditions (d = 0.53), 

and Fukuda et al. (2015) observed a large WM load effect in alpha-band suppression (ηp² = 0.39). 

Based on these findings, we assumed dz = 0.55 for our expected 6 (event) vs 2 (boundary) items 

contrast. A G*Power analysis (paired t-test, two-tailed α = .05, power = .80) indicated N = 26. We 

collected data from 32 participants between the ages of 18 and 26 from Sabancı University in 

exchange for course credit. All participants provided informed consent prior to participating in the 

study. All participants had normal or corrected-to-normal vision and self-reported no history of 

neuropsychological disorders. Due to ocular and recording artifacts in the EEG data, the data from 

9 subjects were excluded, leaving 23 participants (15 female; M = 21.4, SD = 1.83) for analyses. 

The final sample provides approximately 78% power to detect this effect, comparable to prior EEG 

studies of alpha-band suppression modulation by WM load (Fukuda et al., 2015; Heinz & Johnson, 

2017; Hu et al., 2019). 

 

Ethics Statement and Code Availability 

This study was performed according to the Declaration of Helsinki principles, and the 

ethics approval was granted by the Sabancı University Research Ethics Committee (SUREC). All 

data processing and analysis code will be available on the first author’s OSF page 

(https://osf.io/tch3n/) upon acceptance of this manuscript. 

 

Stimuli 

A set of 1068 images of everyday objects (Google Images; Konkle et al., 2010; Konkle & 

Caramazza, 2013; Konkle & Oliva, 2012) was resized to an equal number of non-transparent pixels 

(500 x 500) and was randomly divided into two sets: 540 target and 528 non-target stimuli. Target 

stimuli were those we instructed participants to attend during the study phase, while non-target 

stimuli were displayed on the other side of the screen and included to balance the visual distribution 

due to the lateralized nature of the CDA metric. Both sets were grouped into two categories 
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(animate and inanimate). Each object was shown twice throughout the experiment, once in the first 

half of the experiment and once in the second half. The presentation order was otherwise random. 

There were also 6 different sounds – 3 nature and 3 artificial – presented simultaneously with the 

object images.  

The experiment was programmed in MATLAB (Mathworks) Psychtoolbox (Kleiner et al., 

2007). The viewing distance to the screen was approximately 85 cm, and the background color 

was gray. The location cue was a vertically halved, bicolored circle (.35° x .35°), with one side 

navy blue and the other orange. The location cue represented where the target stimulus would 

appear. For each block, either the blue or orange color indicated the stimulus location, and their 

order was counterbalanced across participants. The target and non-target objects were equidistant 

from the location cue. 

 

Procedure 

The experiment consisted of 44 blocks. Each block consisted of a study phase, a filler task, 

and a test phase containing 8 image pairs of memory test (4 within- and 4 across-event pairs) for 

the temporal order and sequential memory tasks. Participants were allowed to take self-paced 

breaks between blocks during which they were informed about their temporal memory accuracy 

at the end of each block. Before the experiment, participants completed a practice round requiring 

a minimum of 50% accuracy on the temporal order and sequential memory tasks. Participants 

repeated the practice round until they achieved the required accuracy, which took a maximum of 

two attempts among participants. The block structure for the experiment is depicted in Figure 1. 

Each block consisted of three phases: encoding, change localization task (filler), and temporal 

memory tests.  

Encoding phase 

Each encoding phase started with a location cue presented at the center of the screen for a 

randomly jittered duration of 1.5-2 seconds. Next, the memory display with two images on each 

side of the location cue was presented for 2 seconds. Participants were instructed to memorize the 

target image on the cued side of the screen and ignore the non-cued image. Between each memory 

display, there was a 1.75-second interstimulus interval (ISI). The first target image was selected to 

be either animate or inanimate based on the subject, and block numbers were counterbalanced 

across participants. The following 5 target images were from the same object category. We refer 

to a series of 6 within-category images as an event. Blocks always started with events. 

There was a boundary after each event consisting of two images. We chose to include a 

two-item boundary for three reasons. First, testing the reactivation account benefits from 

comparing alpha-band suppression following different event lengths. Second, prior work shows 

that event segmentation effects are stronger when the context shift persists across more than one 

item (Güler et al., 2025), making a single-item boundary suboptimal. Finally, limiting the 

boundary trial to only 2 images helped reduce the likelihood that it would be perceived as its own 

meaningful event. 
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The ISI between an event and a boundary was randomly jittered to be between 1.5 and 2 

seconds to cancel out any systematic voltage carryover between events and boundaries (Cohen, 

2014). The object category varied between events and boundaries. For example, if an event 

contained animate images, then a boundary contained inanimate images. The animate and 

inanimate images alternated between being events and boundaries across blocks. Within each 

block, there were 3 events and 3 boundaries, making up a total of 24 target images.   

Each image was accompanied by a category-specific sound with the same onset time 

(lakeside, jungle, or farm for animate images, and office or traffic for inanimate images). The 

sound duration matched the duration of the visual presentation of the images. The goal of 

alternating the category of images and their associated sounds across events and boundaries was 

to facilitate event segmentation (Heusser et al., 2018; Sols et al., 2017; van de Ven et al., 2021). 

 

 

Figure 1. Event sequence for the encoding phase and memory tests. Participants viewed a series of 

everyday object images presented laterally. They needed to remember the cued item and ignore the non-

cued one. Non-cued item was presented to match the perceptual input – otherwise, the lateral EEG index, 

the CDA, cannot be reliably attributed to WM (Vogel et al., 2005). The image and sound category alternated 

every 6 (event) and 2 (boundary) items between animate and inanimate, and artificial and nature sounds, 

respectively. After the change localization task (filler) of 45 seconds, participants performed sequential and 

temporal order memory tasks. The sequential memory task probe was either the 5th or 6th image of the 

event. The temporal order memory probe included pairs of images with always 3 items in between, shown 

in orange and blue arrows in the flow of objects.  



6 

 

Change Localization Task 

Before the memory test phase, participants were asked to perform a change localization 

task (Zhao et al., 2023). This served two purposes: (1) to measure the participants’ WM capacity 

and (2) to serve as a filler task between encoding and retrieval, minimizing the rehearsal of memory 

items in WM and any potential recency effects in LTM.  

In this task, a black fixation dot (0.35° x 0.35°) at the center of the screen, along with six 

randomly placed colored squares, was presented on a given memory screen for 2.5 seconds. The 

probe display was presented after a 1 second blank retention interval. The probe contained the 6 

colored squares at their original locations. One of the squares on the probe display had a different 

color than the memory display. Participants were asked to indicate this different color by clicking 

on it with the mouse. The probe display remained on screen for 2 seconds regardless of the answer 

to equate the filler task duration. To account for imperfect mouse clicks, a response area 25% 

larger than the area of the correct color’s square was considered correct. Thus, colored squares 

were placed at least 1.25 times their size apart from each other. The ITI was 1 second. The change 

localization task consisted of 12 trials for each block. The filler task started 3 seconds after the end 

of Phase 1 and took 51 seconds. Therefore, Phase 1 and Phase 3 were 54 seconds apart. 

Temporal Memory Tests 

Each temporal memory test in a block consisted of a sequential memory test followed by a 

temporal order memory test. In the sequential memory task, the 5th or 6th images of randomly 

selected events were presented at the center of the screen. Participants were then asked to indicate 

the category of the image that appeared immediately after the presented image in the encoding 

phase. The 5th image of the event constituted the within-event condition because the next object 

would be the 6th image of the same event. On the other hand, the 6th image of the event constituted 

the across-events condition, as the next image would belong to the first image of the boundary.  

In the temporal order memory test, two images were shown on the screen side by side. One 

was either the 2nd or the 5th image of a randomly selected event in the encoding phase, and the 

other was 3 items apart from the first image. For example, the 2nd and 6th images of an event are 

used for the within-event condition. In the across-events condition, the 5th image of an event was 

paired with the 1st image of the following, thus crossing the boundary by two items. Participants 

were then asked to specify which of the images were displayed temporally earlier in the encoding 

phase.  

Both memory tests included 4 probes divided equally per condition (within-events or 

across-event), with 8 probes in total. The sequential memory test was always first. Participants 

responded using the right and left arrow keys. In the sequential memory task, the left arrow 

indicated the animate category and the right arrow indicated the inanimate category. In the 

temporal order memory task, the left and right arrows were used for the answers corresponding to 

the images displayed on the left or the right side of the screen, respectively.  
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EEG Recordings 

The EEG was recorded from 32 sintered - AG/AgCI electrodes positioned at International 

10/20 System sites. The electrodes were attached to an elastic cap (actiCAP, Brain Products). The 

EEG signal was amplified using Brain Products actiCHamp amplifier (actiCHamp Plus, Brain 

Products GmbH, Gilching, Germany) and was digitized at a 1000 Hz sampling rate. 

The vertical EOG (VEOG) was recorded from two external electrodes that were located 

approximately 2 cm above and below the right eye. Two electrodes (F7 and F8) located 

approximately 1 cm lateral to the external canthi were used as HEOGs to detect horizontal eye 

movements. Two electrodes (TP9 and TP10) were attached to the two mastoids. The left mastoid 

was the online reference. Since the amplification of EEG channels and external EOG channels 

differs, we applied a scaling factor of 0.1 µV (Brain Vision Recorder | User Manual, 2018) to 

VEOGs to make the magnitude of the VEOG and HEOG recordings compatible with other EEG 

channels for both online visualization and offline analysis. The EEG data was collected from the 

following electrodes with a customary layout optimized for collecting data mainly from the parietal 

and occipital regions: Fp1, Fp2, F3, F4, Fz, FC5, FC6, FC1, FC2, C3, C4, Cz, CP5, CP6, CP1, 

CP2, P7, P8, P3, P4, Pz, PO7, PO8, PO3, PO4, O1, O2, and Oz. We kept the impedance for the 

electrodes below 20 kΩ. 

We carried out the EEG analyses using MATLAB R2022b (Mathworks, Natick, MA), the 

EEGLAB toolbox (version 2021.1; Delorme & Makeig, 2004), the ERPLAB toolbox (version 

8.30; Lopez-Calderon & Luck, 2014), and custom scripts. Recording artifacts (muscle noise, slow 

drifts, saturation, and blocking) and ocular artifacts (eye movements and blinks) were detected 

manually by visual inspection. Any step-like function in HEOG that exceeded 18 µV was rejected 

as an eye movement. Rejection of the artifacts was performed only before hypothesis testing. Trials 

containing such artifacts were excluded from the analysis. After artifact rejection, we excluded 

datasets with less than 80 trials from the analysis. 

The data was filtered by an IIR Butterworth filter with a band-pass of .01-40 Hz using the 

pop_basicfilter.m function of ERPLAB. The data was then re-referenced offline to the average of 

the right and left mastoids. The noisy channels were interpolated using the pop_interp.m function 

of EEGLAB. Each of the 6 events in each block was epoched using the pop_epoch.m function of 

EEGLAB. For events, one epoch consisted of 6 consecutive memory displays, and for boundaries, 

one epoch consisted of 2 memory displays (corresponding to −2.5 to 22.75 sec for events and −2.5 

to 7.75 sec for boundaries relative to the first display onset). Considering the long duration of these 

epochs, a baseline period of 0.5 seconds prior to the stimulus onset was included in the ERP 

analyses.  

 

CDA analysis 

The CDA was measured at P7/8, PO7/8, and O1/2 as the mean voltage difference at 

electrodes contralateral versus ipsilateral to the location of each target image from 0.4 seconds to 

1 second after the onset of each memory display (Günseli et al., 2019; Ikkai et al., 2010; Vogel et 

al., 2005; Vogel & Machizawa, 2004). We first compared the CDA amplitude of both events and 

https://www.zotero.org/google-docs/?broken=4JZjsS
https://www.zotero.org/google-docs/?4mWUd0
https://www.zotero.org/google-docs/?4mWUd0
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boundaries against 0 with a one-sample t-test to determine whether there was a significant CDA. 

To test the accumulation hypothesis, we then examined a linear trend in CDA amplitude from the 

2nd to the 6th images of events. This was done using a linear contrast across image positions 2, 3, 

4, 5, and 6 within a repeated-measures ANOVA (with CDA amplitude as the dependent variable, 

and item position as the independent variable). A significant linear trend in CDA amplitude across 

5 consecutive items during encoding could reflect the accumulation of information in WM. We 

started with the 2nd item, rather than the 1st, because any reactivation of content from the previous 

event – if it occurs – would likely take place at the 1st item, which serves as the boundary item. 

Additionally, we compared the CDA amplitude at the 2nd and 6th items using a paired-samples t-

test to assess differences between loads. Accordingly, accumulation predicts a larger CDA for the 

6th vs the 2nd item, as the accumulated information in WM would be 6 vs 2.  

 

Alpha-band suppression analysis 

To compute alpha-band suppression (8-12 Hz), we created a sinusoid (ei2ft) for each 

frequency and then converted it to Morlet wavelets by tapering it with a Gaussian (e ^- t2/ 2s2; 

where t is time and s is the Gaussian width). The beginning and the end of the data were padded 

with zeros. All epoched data were restructured into a single continuous EEG data, and then the 

Fast Fourier Transform (FFT) was applied to both the EEG and Morlet waves. For each frequency, 

we calculated the dot product of the Fourier-transformed EEG data and Morlet wavelet, then 

applied inverse FFT to each dot product. We calculated the alpha-band power by averaging power 

across 8 and 12 Hz, sampled logarithmically. We performed baseline normalization log-

transforming the ratio of the power in each frequency in each trial relative to the average baseline 

(0.5-0.2 seconds before the target onset) of all trials. The log transformation helps compress the 

scale of the data and makes it easier to interpret differences in power levels across conditions. We 

averaged alpha-band suppression between 0.4 and 1 seconds after each memory display onset at 

P7/8, PO7/8, and O1/2, just as done for the CDA. For one participant, the boundary time–frequency 

analysis required artifact rejection in the long-epoch data because there was a mismatch between 

the short and long epoch numbers caused by two battery interruptions.  

To test our hypotheses regarding the accumulation account, we first examined a linear trend 

in alpha-band suppression across the 2nd and 6th items, then compared these items using a paired-

samples t-test, as for the CDA. To assess the reactivation account, we compared the alpha-band 

suppression for the 1st item of events and the 1st item of boundaries using a paired samples t-test. 

If the items from the previous event are reactivated at the boundary, WM load should be higher at 

the end of an event (6 items) compared to the boundary (2 items), resulting in a larger alpha-band 

suppression following events compared to boundaries. On the other hand, if there is no 

reactivation, alpha-band suppression should be equal between events and boundaries, given that 

the memory load is the same as one item.  In addition to these comparisons, we also examined 

CDA amplitude and alpha-band suppression at boundaries (i.e., 1st and 2nd items). 
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Behavioral analysis 

Sequential memory and temporal order memory tasks were used as behavioral indices of 

event segmentation (Buonomano et al., 2023). We predicted that temporal order memory accuracy 

would be higher in the within-event condition compared to the across-event condition, consistent 

with operationalizations of event segmentation in memory.  

We used a change localization task, which measures WM capacity, both as a filler task and 

to correlate it with accumulation, as we hypothesized accumulation may be limited by individuals’ 

WM capacity. To quantify individual differences in WM capacity, we extracted a WM capacity 

estimate (K) score for each participant using a formula that was developed by Zhao et al. (2023) 

and was as follows: K = Acc(change localization) * N^2 - N / N - 1, where Acc(change 

localization) was the change localization task accuracy rate, and N was the set size, which was 6 

for each participant. A higher K score would indicate greater WM capacity.  

To complement the frequentist analysis, we also conducted Bayesian analyses to quantify 

the strength of evidence for both the null (H0) and alternative (H1) hypotheses. This approach was 

chosen because we did not make directional predictions about whether WM would support 

segmentation via accumulation within events or via reactivation at boundaries. Bayes factors were 

interpreted as BF10 < 1 = evidence for H0, 1-3 = anecdotal evidence for H1, 3-10 = moderate 

evidence for H1, > 10 = strong evidence for H1 (Schönbrodt & Wagenmakers, 2018).  

 

Results 

The normality of the difference scores between within- and across-event conditions for 

temporal order and sequential memory tests was assessed using the Shapiro–Wilk test. For 

accuracy, temporal order met the normality assumption (W = .96, p = .66), whereas sequential 

memory did not (W = .88, p = .01). For response times, both contrasts satisfied the normality 

assumption (sequential memory: W = .93, p = .17; temporal order: W = .94, p = .21). 

 

Behavioral Results 

Sequential memory accuracy was significantly higher for within-event pairs (M = 0.82, SD 

= 0.11) than across-event pairs (M = 0.53, SD = 0.23), t(22) = −5.99, p < .001, d = 1.25, 95% CI: 

−2.02, −0.97], with strong evidence supporting this effect (BF10 = 41). Response times for the 

sequential memory were slower for within-events (M = 2.07, SD = 0.87) than across-events (M = 

2.00, SD = 0.89), though this difference was weakly supported (t(22) = -1.95, p = .06, d = -0.41, 

95% CI [-0.88, -0.01], BF10 = 1.09) (see Figure 2). This pattern suggests event segmentation 

during encoding.  

Accuracy in the temporal order memory did not differ between the within- (M = 0.49, SD 

= 0.06) and across- (M = 0.49, SD = 0.05) events conditions, t(22) = -0.02, p = 0.97, d = 0.006, 

95% CI [-0.03 0.03], BF10 = 0.21. Response times for within-event (M = 2.52, SD = 0.68) and 

across-event (M = 2.54, SD = 0.73) conditions showed no significant difference, t(22) = 0.48, p = 

.63, d = -0.10, 95% CI [-0.11, 0.06], BF10 = 0.24. 
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Individuals’ WM capacity was assessed with K score with an average score of 1.46 (SD = 

0.80, 95% CI = [1.13 1.79]) which was considerably low compared to the average K score of 2.45 

in Zhao et al. (2023). To assess whether WM capacity was related to sequential memory 

performance, we examined Spearman rho (ρ) correlations between K scores and sequential 

memory measures. K score was not correlated with sequential memory accuracy (within-event: ρ 

(21) = .13, p = .56; across-event: ρ (21) = .06, p = .79) or with the sequential memory segmentation 

score (across-within difference: ρ (21) = −.08, p = .72). All remaining correlations were also non-

significant (ρs ≤ .32, ps ≥ .13). 

 

 
Figure 2. Sequential memory accuracy (A) and response time (B) for across and within-events. 

EEG Results 

A linear trend in CDA moderately supports the accumulation of information in WM during events  

To establish that CDA reliably indexed WM engagement in our sample, we first tested 

whether mean CDA amplitude differed from zero. CDA was significantly below zero, t(22) = -

4.19, p < .001, d = -0.87, 95% CI [-1.35, -0.38], BF10 = 82.4. Critically, CDA amplitude increased 

as a function of item position within events. A linear trend analysis revealed a significant increase 

in CDA amplitude from the 2nd to the 6th item, consistent with gradual accumulation of 

information in WM (linear trend within repeated-measures ANOVA: t(22) = -2.50, p = .02, d = -

0.19 (see Figure 3A). However, the repeated-measures ANOVA did not provide strong evidence 

for a main effect of item order, F(4, 88) = 2.17, p = 0.07, η2 = 0.09 (BF10 = 0.60), suggesting a 

continuous rather than stepwise change in CDA across the event. Consistent with the linear trend, 

a direct comparison between early and late event positions showed that CDA amplitude was 

significantly larger for the 6th item (M = -0.30, SD = 0.33) than for the 2nd item (M = -0.22, SD = 

0.32), t(22) = 2.76, p = .01, d = 0.57, 95% CI [0.12, 1.01], (BF10 = 4.40). At event boundaries, 

CDA also increased from the 1st item (M = -0.14 SD = 0.28) to the 2nd item (M = -0.21, SD = 
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0.34), t(22) = 2.23, p = .03, d = 0.46, 95% CI [0.03, 0.89]). However, the Bayesian Factor was 

smaller than 3, suggesting weak evidence (BF10 = 1.71).  

We next applied the same analyses to bilateral alpha-band suppression to track the 

accumulation of information across items within events. In contrast to the CDA results, alpha-band 

suppression did not exhibit a systematic linear change from the 2nd to the 6th item of events, t(22) 

= 0.34, p = 0.73, d = .07, 95% CI [-0.10, 0.17]. Consistent with this pattern, a repeated-measures 

ANOVA provided strong Bayesian evidence in favor of the null hypothesis of no linear modulation 

in alpha-band suppression across items (BF10= 0.07), F(4, 88) = 0.66, p = .61, η² = .02. Thus, 

unlike CDA, alpha-band activity did not systematically vary as a function of item order within 

events. Direct pairwise comparisons further supported this conclusion. Alpha-band suppression 

did not differ significantly between the 2nd and 6th items of events, t(22) = 0.07, p = .94, d = 0.01, 

95% CI [−0.39, 0.42], BF10 = 0.21. However, the 1st item of the boundaries (M = -3.02, SD = 0.38) 

indicated higher alpha-band suppression compared to the 2nd item (M = -2.72, SD = 2.41) at event 

boundaries, t(22) = -2.12, p = .04, d = -0.44, 95% CI [-0.86, 0.01], BF10 = 1.43. Thus, there was 

no evidence for the accumulation of event items in alpha-band suppression. However, there was a 

higher alpha suppression of the 1st boundary item compared to the 2nd item. Overall, we obtained 

mixed evidence for the accumulation of information in WM. 
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Figure 3. The contralateral delay activity (CDA), a marker of working memory load, gradually increased 

across a stable event, providing evidence of item accumulation effect in working memory. (A) The mean 

CDA amplitude of each item in an event (6 item positions) versus boundaries (2 item positions), depicted 

in a line plot. (B) the CDA amplitude over time within main, or contextually stable, events. Pink bars 

represent the onset of the item pairs during encoding. The CDA time frames used in the analyses are 

depicted in light gray. Note: Error bars are 95% confidence intervals. 
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Larger alpha-band suppression following boundaries supports WM reactivation of event items  

The average alpha-band suppression across items is shown in Figure 4A. The reactivation 

account and event segmentation predict larger alpha-band suppression following events compared 

to boundaries, as the content of reactivation would involve 6 versus 2 items, respectively. To test 

this, we compared alpha-band suppression at the 1st item of boundaries (i.e., the first item 

following a transition) and the 1st item of events (i.e., the first item following a transition). There 

was strong evidence for a larger (more negative) alpha-band suppression; t(22) = 4.22, p < .001, d 

= 0.88, 95% CI [0.39, 1.35], BF10 = 89.38, following boundaries (M = -3.42, SD = 2.40) compared 

to events (M = -2.56, SD =1.81), providing support for the WM reactivation account.  

To directly contrast the accumulation and reactivation accounts, we compared the alpha-

band suppression between the 6th item of events and the 1st item of boundaries. Under the 

accumulation account, WM load should increase across the six items of an event, such that the 6th 

item reflects a load of approximately six items (or capacity), whereas the 1st item of boundaries 

should reflect a reset load of one item. Under the reactivation account, items are not gradually 

maintained in WM during the event; instead, they are reactivated only when encountered with a 

boundary. Thus, the 6th item should reflect a load of one item (the current item), while the 1st item 

of the boundary should reflect a higher load due to reactivation of the preceding six event items. 

There was anecdotal support for a larger alpha-band suppression at the boundaries’ 1st item (M = 

-3.42, SD = 2.40) than at the events’ 6th item (M = -2.74, SD = 2.05), providing support for the 

reactivation account; t(22) = 2.08, p = .04, d = 0.43, 95% CI [0.003, 0.89], BF10 = 1.35. 
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Figure 4. Alpha-band suppression results support the idea that items from a stable event are reactivated at 

event boundaries. (A) Bilateral alpha-band suppression across event and boundary items, depicted in a line 

graph. (B) Bilateral alpha-band suppression during both events and boundaries over time. Pink bars 

represent the image onsets, respectively. The time frames for the bilateral alpha-band suppression 

calculation used in our analyses are depicted in light grey. The error bars represent the standard error of the 

mean for data corrected for between-subjects variance. 
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     Correlational analysis for neural WM indices 

Thus far, we have identified strong evidence for reactivation of information at boundaries 

and mixed evidence for accumulation of information in WM during event encoding. Next, we 

examined whether our EEG measure of WM accumulation across an event was related to 

individual differences in WM capacity. To investigate this, we examined individual differences in 

the Spearman correlation between increases in individual CDA, as a measure of information 

accumulation, and their WM capacity (K), which was insignificant (ρ (21) = .17, p = .43). 

Consistently, Spearman correlational analysis indicated that bilateral alpha-band suppression 

difference between the first items of boundary (ρ (21) = .03, p = .86) and first item of the events 

(ρ (21) = -.09, p = .68). was not significantly correlated with WM capacity. Together, these null 

correlations suggest that individual differences in WM capacity do not strongly constrain the 

degree of neural accumulation or boundary-related reactivation observed in the present task. 

 

Discussion 

Working memory (WM) has long been implicated as a key component of event 

segmentation (Kurby & Zacks, 2008; Zacks et al., 2007), yet how WM specifically contributes to 

this fundamental cognitive process is unknown. Here, we investigated two accounts: the 

accumulation account proposes that information gradually accumulates in WM over the course of 

an event and is flushed at an event boundary. Accumulation should be reflected in a gradual 

increase in EEG indices of WM load within a stable event, followed by a rapid decrease at the 

following boundary. In contrast, the reactivation account suggests that information encountered 

during an event is not continuously maintained in WM but rather is reactivated when a boundary 

occurs. This account predicts higher WM load indices at event boundaries, scaling with the amount 

of the content of the reactivated event. Our EEG results provided strong support for the reactivation 

account and only moderate support for the accumulation account. 

Consistent with the reactivation account, alpha-band suppression was higher at the 

boundary following 6-item events compared to 2-item boundaries. Because only one item was 

presented as the 1st item both in boundaries and events, this effect cannot reflect active 

maintenance of the current item (Fukuda et al., 2015; Fukuda & Woodman, 2017). Rather, it 

suggests that item representations from the preceding event were reactivated in WM at boundaries, 

increasing WM load in proportion to event length. Since this reactivation evidence is based on a 

load-sensitive EEG index, it is consistent with the concurrent reinstatement of multiple items from 

the concluding event. This extends prior evidence for boundary-triggered reactivation (Silva et al., 

2019; Sols et al, 2017), which relied on multivariate pattern similarity and therefore could not 

distinguish between serial replay and simultaneous reactivation of multiple event items. 

We observed mixed evidence for the accumulation of within-event memoranda in WM. A 

linear increase across items was present in the CDA but not in alpha-band suppression. Likewise, 

comparing the 2nd and 6th items of events yielded moderate evidence for a CDA difference but 

not in alpha-band suppression. Explaining this discrepancy is not straightforward. One possibility 

is capacity-limited accumulation in WM, whereby information is accumulated during an event but 

up to the WM capacity of ~3 items (cf. Luck & Vogel, 1997; Vogel & Machizawa, 2004). This 
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constraint may operate either through replacement of earlier items once capacity is reached or 

through representational compression, whereby multiple items are integrated into a smaller 

number of chunks (Güler et al., 2024). In both cases, effective WM load may remain relatively 

stable despite ongoing encoding. A second possibility is that alpha-band suppression reflects both 

boundary-triggered reactivation of prior event information (Fukuda & Woodman, 2017) and the 

encoding of newly presented items (Fukuda et al., 2015). Under this account, alpha-band 

suppression would be high in early in an epoch due to reactivation and remain relatively stable 

across subsequent within-event items. In contrast, the CDA primarily reflects newly encoded items 

and is insensitive to the reinstatement of previously encoded information (Adam et al., 2018), 

leaving more room to increase over the event.  

What function could reactivation serve? Reactivation at boundaries could facilitate the 

formation of associations both within and across events. By concurrently reinstating event items, 

reactivation can strengthen their associations via mnemonic binding with prior event 

representations (Baldassano et al., 2017; Ben-Yakov & Henson, 2018; DuBrow & Davachi, 2016). 

Moreover, reactivating the previous event may help associate the prior experiences with the new 

one, thereby establishing a subjective sense of continuity (Clewett et al., 2019; Hahamy et al., 

2023; Schlichting & Preston, 2016; Sols et al., 2017). 

Alongside observing strong evidence for reactivation, we observed moderate and mixed 

evidence of accumulation in WM, suggesting that these processes are not mutually exclusive but 

may operate at different moments and levels of representation. Reactivation may occur at event 

boundaries, reinstating prior event information into an active state, whereas accumulation may 

unfold within events as newly encoded items are incorporated into WM. Under this account, event 

segmentation is supported by a dynamic interplay between reactivation and accumulation, such 

that prior event representations are reactivated to provide a sense of continuity, while new 

information is progressively accumulated and integrated as the event unfolds. 

If previous event items are reactivated in WM at a boundary, why have behavioral studies 

shown that accessing information from a previous event is harder than the current event? For 

example, Radvansky et al. (2011) found that crossing a doorway, identified as an event boundary, 

decreased memory performance and led to slower response times for objects encountered before 

the transition. This finding suggests that former WM contents are flushed at event boundaries. 

Similar results were observed in studies using real rooms, video manipulations, or movement, 

indicating that information in WM is flushed when encountering an event boundary (Baker & 

Levin, 2015; Lawrence & Peterson, 2016; Ongchoco & Scholl, 2019; Pettijohn & Radvansky, 

2016; Radvansky et al., 2010; Radvansky & Copeland, 2006). 

We propose two alternative explanations to reconcile the findings of the current study, 

whereby the previous event was reactivated, and the studies that claim the previous event is flushed 

(for a review, see Güler et al., 2024). The first involves perceptual interference: context changes, 

such as different room colors and furniture shapes, can distort memory strength (Clapp et al., 2010; 

Dolcos et al., 2007; Hakim et al., 2019; Rademaker et al., 2015; van Moorselaar et al., 2015). This 

interference can cause a decline in memory accessibility, reflecting degraded WM representations 
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rather than their removal from WM. The second explanation involves attentional blinks or lapses 

that occur at event boundaries. Attending to an event boundary might cause individuals to miss 

other information because boundary detection captures attentional resources, leading to a 

temporary decrease in perceptual processing—similar to an attentional blink. During this brief 

attentional lapse, incoming information is less likely to be encoded into WM, resulting in 

forgetting of items that occur immediately around the boundary (Allen et al., 2004; Kumar et al., 

2016; McArthur et al., 1999; Tombu & Seiffert, 2008), which may underlie the underestimation 

observed in Ongchoco & Scholl (2019). From this perspective, reactivation and attentional 

disruption can co-occur: prior event items may be reactivated at boundaries but become 

temporarily inaccessible when boundary processing consumes attentional resources. Future 

research is needed to dissociate the contributions of flushing, attentional lapses, and the difficulty 

of accessing the memory of the previous event. 

Our findings are consistent with prior neuroimaging studies testing the role of WM in event 

segmentation. However, existing neural evidence does not fully specify the mechanisms involved 

in this process, as signals attributed to WM could also reflect other memory-relevant processes 

engaged during continuous experience. While multivariate pattern similarity for event items can 

be considered an index of WM reactivation, it may also reflect other memory-relevant processes, 

such as offline replay (Liu et al., 2019) or narrative integration that maintains coherence across 

events (Chang et al., 2021). Likewise, increasing pattern similarity within events (Wu et al., 2023) 

could reflect the progressive accumulation of sequential information in WM. Still, it could also 

arise from the contextual stabilization of the event through two distinct mechanisms that do not 

require constant WM storage. First, stabilizing context representation can increase pattern 

similarity across consecutive items (Baldassano et al., 2017), as items are not represented in 

isolation but rather in context. Second, as individuals form a more stable understanding of the 

event context, their predictions about upcoming items become increasingly precise. Thus, neural 

activity during each item reflects both the item itself and the prediction of the next one. As these 

predictions become more accurate, they more closely match what actually appears next. 

Consequently, the neural activity evoked by one item becomes more similar to the activity evoked 

by the following item (De Gardelle et al., 2013; Egner et al., 2010; Summerfield & De Lange, 

2014; Walsh et al., 2020). Therefore, both increased prediction precision and contextual 

convergence can produce greater pattern similarity within an event, even in the absence of WM 

accumulation. To provide direct evidence to distinguish accumulation and reactivation of event 

items in WM, the present study has used load-sensitive electrophysiological markers.   

In conclusion, by using temporally precise electrophysiological indices of WM load, we 

found two key results. First, individuals reactivated item representations from the preceding event 

at boundaries. Second, they showed only modest accumulation of information in WM during 

events. These findings suggest that stronger within-event associations across memoranda may 

result from the reactivation of prior event representations at event boundaries. By dissociating 

neural signatures of accumulation and reactivation, this study provides a mechanistic perspective 

on how WM may contribute to the organization of distinct events in perception and memory. 
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